

Changing the economics of space

Accommodating Instruments on Small Platforms

> **Philip Davies** email p.davies@sstl.co.uk **March 2010**

SSTL's Wide Range of Platforms

Platforms at a variety of price/performance points:

- SSTL 10, nanosatellite platform
- SSTL 100, compact modular platform
- SSTL 150, enhanced modular platform
- SSTL 300, high-performance modular platform
- SSTL 300+, future missions
- Ability to rapidly design and qualify custom platforms

Generic Electrical Architecture

SSTL - 100 / 150

- "Entry level" operational missions
- Good starting point for constellations

SSTL - 300 / 300+

- Higher performance & throughput:
 - NigeriaSat-2
 - 2.5m Pan, 5m 4 band MS
 - Earth Mapper
 - 60cm Pan, 2.4m 3 band MS
 - GMES Sentinel-5P
 - UV, ViS, NIR, SWIR Spectrometer

Smallsat performance

- Performance is mature, and keeping pace with modern space and terrestrial technology
- Strong relationship between mass and cost

Spacecraft mass and Programme cost

Performance

- Orbit average power generated is typically less than 1W for each spacecraft kg.
 - Inertial pointing missions or those with tracking panels can perform better

Small Satellite mass vs generated power

Small Satellite mass vs payload mass

 Typical payload mass fractions are ~30%, 50% demonstrated

Payload / Instrument Accommodation

- Think about:
 - Key areas
 - Mechanical
 - Power
 - Thermal
 - Data
 - Attitude & Orbit Determination/Control
 - Orbit Constraints
 - Other (lifetime, special requirements)
 - Ground systems & CONOPS

Mechanical Interface

- Chosen Platform will have ability to carry a range of different masses & dimensions
 - Mass and mass properties (Mol etc) important
 - Think about a 3D model
- Even if mass 'fits' then there are other impacts into system such as agility which depend on mass and mass properties
- Does payload need mechanical isolation from platform sources of mechanical noise
- Launch vibration must be analysed at spacecraft level

Power/Electrical Specification

- Key drivers are peak power and average power
- Duty cycle some instruments can be switched on/off even when off is there a power requirement (standby mode)
 - "day in the life" scenario
- Other considerations:
 - Noise
 - In-rush currents
 - Switching interface definition
 - Voltages and tolerances (5V reg., 28V unreg.)
 - Physical power connector definitions
- High powers (>200W) typically imply sun-tracking panels – adds complexity to power system, ADCS, FDIR

Thermal

- Constraints e.g. upper and lower limits of allowable temperatures
 - Is this a platform function or is it best performed within the instrument
- Thermal Stability (short term variation)
 - Is this a platform function or is it best performed within the instrument
- Possible major impacts into power (if heaters or active coolers required)
- Possible mechanical impacts (does platform need radiators)

Data

- Physical data interfaces (House-Keeping, Payload Data) inc. mechanical connectors and pin-out definitions
- Protocols inc. command and telemetry layout
- Data rates peak & average
- Storage requirements (how much data should platform store and/or buffer)
- Processing requirements (does any payload processing occur on the platform)
- Downlink requirements volume, rate, latency, band: drives Tx equipment, G/S usage

Attitude & Orbit (AODCS)

- Attitude
 - Control
 - Pointing accuracy
 - Pointing modes
 - Pointing stability
 - Agility
 - Determination

- Accuracy of determination of pointing direction (typically instrument bore-sight angle or geolocation)
- Frequency of attitude determination (agility)
- Orbit
 - Control
 - How much orbit maintenance (formation flying, constellation, repeating ground track, LTAN maintenance)
 - Deorbit requirement
 - Determination
 - Precise (GPS, GPS 2 frequency, retro-reflectors/DORIS)

Choice of Orbit

- Probably LEO
- Sunsynch, Polar, Equatorial, Inclined
 - Major impacts onto power generation, thermal
- Impact of altitude
 - Low e.g. <500km, need ability to raise altitude, attitude disturbances, environment (AO)
 - Mid ~500-700km, most missions
 - High >700km, problem of de-orbit gets bigger, possible radiation issues
- ESA will always assume worst case date for launch

Other considerations

- Special requirements e.g. EMC/EMI/Magnetic
 Cleanliness
 - What are the EMC/EMI requirements on the platform?
 - Any magnetic cleanliness requirements?
 - Any limitations on spacecraft propellant choice and other materials

Lifetime

- Drives redundancy & operations costs

Operations & Ground Systems

- What is the operational concept?
 - Mission planning
 - Downlink scenarios
 - Mission specific data processing
 - Archiving
 - Data dissemination
- Drives ground segment architecture
- Requirements on flight operations segment
 - Data volumes
 - Networks
 - Latency

Typical SSTL Platform Specifications

	SSTL-100	SSTL-150	SSTL-300	SSTL-300+
Lifetime (Years)	5	7+	7+	7+
Delivery (Years)	1.5	2	2	2.5
Payload Mass (kg)	40	70	70	150+
Payload Power (W)	30	50	70-100	150+
CPU	386 25MHz	386 25MHz	Sparc V7 11 Mips	Sparc V7 11 Mips
Memory (Gbytes)	4	16	24	32+
Comms (Mbps)	80	80	210	210-320
Pointing (degree)	1	0.1	0.1	0.1
Geolocation (m,99.7%)	-	100	100	30
Vibration isolation	-	yes	yes	yes
Delta-v (m/s)	20	30	20	55

Conclusions

- Vital to involve spacecraft prime contractor early in process
 - System engineer
 - Subsystem engineers if difficult problems are identified
- SSTL can provide support for EE8 Missions and other equivalent programmes

Changing the economics of space

SATELLITE TECHNOLOGY LTD

.

Thank you

* *

© Surrey Satellite Technology Ltd. Tycho House, 20 Stephenson Road, Surrey Research Park, Guildford, Surrey, GU27YE, United Kingdom Tel: +44(0)1483803803 | Fax:+44(0)1483803804 | Email: info@sstl.co.uk | Web:www.sstl.co.uk